Defining Features for Preprocessing đ
Customize the preprocessing pipeline by setting up a dictionary that maps feature names to their respective types, tailored to your specific requirements.
đ¯ Numeric Features
Explore various methods to define numerical features tailored to your needs:
features_specs = {
"feat1": "float",
"feat2": "FLOAT",
"feat3": "FLOAT_NORMALIZED",
"feat3": "FLOAT_RESCALED",
...
}
Utilize predefined preprocessing configurations with FeatureType
.
from kdp.features import FeatureType
features_specs = {
"feat1": FeatureType.FLOAT_NORMALIZED,
"feat2": FeatureType.FLOAT_RESCALED,
...
}
Available FeatureType
options:
- FLOAT
- FLOAT_NORMALIZED
- FLOAT_RESCALED
- FLOAT_DISCRETIZED
Customize preprocessing by passing specific parameters to NumericalFeature
.
from kdp.features import NumericalFeature
features_specs = {
"feat3": NumericalFeature(
name="feat3",
feature_type=FeatureType.FLOAT_DISCRETIZED,
bin_boundaries=[(1, 10)],
),
"feat4": NumericalFeature(
name="feat4",
feature_type=FeatureType.FLOAT,
),
...
}
Here's how the numeric preprocessing pipeline looks:
đââŦ Categorical Features
Define categorical features flexibly:
features_specs = {
"feat1": "INTEGER_CATEGORICAL",
"feat2": "STRING_CATEGORICAL",
"feat3": "string_categorical",
...
}
Leverage default configurations with FeatureType
.
from kdp.features import FeatureType
features_specs = {
"feat1": FeatureType.INTEGER_CATEGORICAL,
"feat2": FeatureType.STRING_CATEGORICAL,
...
}
Available FeatureType
options:
- STRING_CATEGORICAL
- INTEGER_CATEGORICAL
Tailor feature processing by specifying properties in CategoricalFeature
.
from kdp.features
from kdp.features import CategoricalFeature
features_specs = {
"feat1": CategoricalFeature(
name="feat7",
feature_type=FeatureType.INTEGER_CATEGORICAL,
embedding_size=100,
),
"feat2": CategoricalFeature(
name="feat2",
feature_type=FeatureType.STRING_CATEGORICAL,
),
...
}
See how the categorical preprocessing pipeline appears:
đ Text Features
Customize text features in multiple ways to fit your project's demands:
features_specs = {
"feat1": "text",
"feat2": "TEXT",
...
}
Use FeatureType
for automatic default preprocessing setups.
from kdp.features import FeatureType
features_specs = {
"feat1": FeatureType.TEXT,
"feat2": FeatureType.TEXT,
...
}
Available FeatureType
options:
- TEXT
Customize text preprocessing by passing specific arguments to TextFeature
.
from kdp.features import TextFeature
features_specs = {
"feat1": TextFeature(
name="feat2",
feature_type=FeatureType.TEXT,
max_tokens=100,
stop_words=["stop", "next"],
),
"feat2": TextFeature(
name="feat2",
feature_type=FeatureType.TEXT,
),
...
}
Here's how the text feature preprocessing pipeline looks:
â Cross Features
To implement cross features, specify a list of feature tuples in the PreprocessingModel
like so:
from kdp.processor import PreprocessingModel
ppr = PreprocessingModel(
path_data="data/data.csv",
features_specs={
"feat6": FeatureType.STRING_CATEGORICAL,
"feat7": FeatureType.INTEGER_CATEGORICAL,
},
feature_crosses=[("feat6", "feat7", 5)],
)
Example cross feature between INTEGER_CATEGORICAL and STRING_CATEGORICAL:
đ Custom Preprocessing Steps
If you require even more customization, you can define custom preprocessing steps using the Feature
class, using preprocessors
attribute.
The preprocessors
attribute accepts a list of methods defined in PreprocessorLayerFactory
.
from kdp.features import Feature
from kdp.layers_factory import PreprocessorLayerFactory
features_specs = {
"feat1": FeatureType.FLOAT_NORMALIZED,
"feat2": Feature(
name="custom_feature_pipeline",
feature_type=FeatureType.FLOAT_NORMALIZED,
preprocessors=[
PreprocessorLayerFactory.rescaling_layer,
PreprocessorLayerFactory.normalization_layer,
],
# leyers required kwargs
scale=1,
)
}
Here's how the text feature preprocessing pipeline looks:
The full list of availble layers can be found: Preprocessing Layers Factory